Universal Reference Frame

Alejandro A. Torassa

Creative Commons Attribution 3.0 License (2013) Buenos Aires, Argentina atorassa@gmail.com

Abstract

In classical mechanics, this paper presents the universal reference frame.

Universal Reference Frame

The universal reference frame is a reference frame fixed to the center of mass of the universe.

The position $\mathring{\mathbf{r}}_a$, the velocity $\mathring{\mathbf{v}}_a$, and the acceleration $\mathring{\mathbf{a}}_a$ of a particle A of mass m_a relative to the universal reference frame $\mathring{\mathbf{S}}$, are given by:

$$\mathring{\mathbf{r}}_a = \int \int (\mathbf{F}_a/m_a) dt dt$$

$$\mathring{\mathbf{v}}_a = \int (\mathbf{F}_a/m_a) dt$$

$$\mathring{\mathbf{a}}_a = (\mathbf{F}_a/m_a)$$

where \mathbf{F}_a is the net force acting on particle A.

From the above equations the following equations are obtained:

$$\begin{bmatrix} m_a \mathring{\mathbf{r}}_a - \int \int \mathbf{F}_a \, dt \, dt = 0 \\ \downarrow \\ m_a \mathring{\mathbf{v}}_a - \int \mathbf{F}_a \, dt \, dt = 0 \\ \downarrow \\ m_a \mathring{\mathbf{v}}_a - \int \mathbf{F}_a \, dt = 0 \\ \downarrow \\ m_a \mathring{\mathbf{a}}_a - \mathbf{F}_a = 0 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1/2 m_a \mathring{\mathbf{r}}_a^2 - 1/2 m_a (\int \int (\mathbf{F}_a/m_a) \, dt \, dt)^2 = 0 \\ 1/2 m_a \mathring{\mathbf{v}}_a^2 - \int \mathbf{F}_a \, d\mathring{\mathbf{r}}_a = 0 \\ \downarrow \\ m_a \mathring{\mathbf{a}}_a - \mathbf{F}_a = 0 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1/2 m_a \mathring{\mathbf{a}}_a^2 - 1/2 m_a (\mathbf{F}_a/m_a)^2 = 0 \\ 1/2 m_a \mathring{\mathbf{a}}_a^2 - 1/2 m_a (\mathbf{F}_a/m_a)^2 = 0 \\ \end{bmatrix}$$

where
$$\frac{1}{2}\mathring{\mathbf{v}}_a^2 = \int \mathring{\mathbf{a}}_a \, d\mathring{\mathbf{r}}_a \rightarrow \frac{1}{2} m_a \mathring{\mathbf{v}}_a^2 = \int m_a \mathring{\mathbf{a}}_a \, d\mathring{\mathbf{r}}_a \rightarrow \frac{1}{2} m_a \mathring{\mathbf{v}}_a^2 = \int \mathbf{F}_a \, d\mathring{\mathbf{r}}_a$$

Reference Frame

The position $\mathring{\mathbf{r}}_a$, the velocity $\mathring{\mathbf{v}}_a$, and the acceleration $\mathring{\mathbf{a}}_a$ of a particle A of mass m_a relative to a reference frame S, are given by:

$$\mathbf{\mathring{r}}_{a} = \mathbf{r}_{a} + \mathbf{\mathring{r}}_{S}$$

$$\mathbf{\mathring{v}}_{a} = \mathbf{v}_{a} + \mathbf{\mathring{o}}_{S} \times \mathbf{r}_{a} + \mathbf{\mathring{v}}_{S}$$

$$\mathbf{\mathring{a}}_{a} = \mathbf{a}_{a} + 2 \mathbf{\mathring{o}}_{S} \times \mathbf{v}_{a} + \mathbf{\mathring{o}}_{S} \times (\mathbf{\mathring{o}}_{S} \times \mathbf{r}_{a}) + \mathbf{\mathring{o}}_{S} \times \mathbf{r}_{a} + \mathbf{\mathring{a}}_{S}$$

where \mathbf{r}_a , \mathbf{v}_a , and \mathbf{a}_a are the position, the velocity, and the acceleration of particle A relative to the reference frame S; $\mathring{\mathbf{r}}_S$, $\mathring{\mathbf{v}}_S$, $\mathring{\mathbf{a}}_S$, $\mathring{\omega}_S$, and $\mathring{\alpha}_S$ are the position, the velocity, the acceleration, the angular velocity, and the angular acceleration of the reference frame S relative to the universal reference frame $\mathring{\mathbf{S}}$.

The position $\mathring{\mathbf{r}}_S$, the velocity $\mathring{\mathbf{v}}_S$, the acceleration $\mathring{\mathbf{a}}_S$, the angular velocity $\mathring{\boldsymbol{\omega}}_S$, and the angular acceleration $\mathring{\boldsymbol{\alpha}}_S$ of a reference frame S fixed to a particle S relative to the universal reference frame S, are given by:

$$\mathring{\mathbf{r}}_{S} = \int \int (\mathbf{F}_{0}/m_{s}) dt dt$$

$$\mathring{\mathbf{v}}_{S} = \int (\mathbf{F}_{0}/m_{s}) dt$$

$$\mathring{\mathbf{a}}_{S} = (\mathbf{F}_{0}/m_{s})$$

$$\mathring{\omega}_{S} = \left| (\mathbf{F}_{1}/m_{s} - \mathbf{F}_{0}/m_{s})/(\mathbf{r}_{1} - \mathbf{r}_{0}) \right|^{1/2}$$

$$\mathring{\alpha}_{S} = d(\mathring{\omega}_{S})/dt$$

where \mathbf{F}_0 is the net force acting on the reference frame S in a point 0, \mathbf{F}_1 is the net force acting on the reference frame S in a point 1, \mathbf{r}_0 is the position of the point 0 relative to the reference frame S (the point 0 is the center of mass of particle S and the origin of the reference frame S) \mathbf{r}_1 is the position of the point 1 relative to the reference frame S (the point 1 does not belong to the axis of rotation) and m_s is the mass of particle S (the vector $\mathring{\omega}_S$ is along the axis of rotation)

On the other hand, the position $\mathbf{\mathring{r}}_{S}$, the velocity $\mathbf{\mathring{v}}_{S}$, and the acceleration $\mathbf{\mathring{a}}_{S}$ of a reference frame S relative to the universal reference frame \mathring{S} are related to the position \mathbf{r}_{cm} , the velocity \mathbf{v}_{cm} , and the acceleration \mathbf{a}_{cm} of the center of mass of the universe relative to the reference frame S.

Kinetic Force

The kinetic force \mathbf{K}_{ab} exerted on a particle A of mass m_a by another particle B of mass m_b , caused by the interaction between particle A and particle B, is given by:

$$\mathbf{K}_{ab} = \frac{m_a m_b}{m_{cm}} (\mathring{\mathbf{a}}_a - \mathring{\mathbf{a}}_b)$$

where m_{cm} is the mass of the center of mass of the universe, $\mathbf{\mathring{a}}_a$ and $\mathbf{\mathring{a}}_b$ are the accelerations of particles A and B relative to the universal reference frame \mathring{S} .

From the above equation it follows that the net kinetic force \mathbf{K}_a acting on a particle A of mass m_a , is given by:

$$\mathbf{K}_a = m_a \mathbf{\mathring{a}}_a$$

where $\mathbf{\mathring{a}}_a$ is the acceleration of particle A relative to the universal reference frame \mathring{S} .

From page [1], we have:

$$m_a \mathring{\mathbf{a}}_a - \mathbf{F}_a = 0$$

That is:

$$\mathbf{K}_a - \mathbf{F}_a = 0$$

Therefore, the total force $(\mathbf{K}_a - \mathbf{F}_a)$ acting on a particle A is always in equilibrium.

Bibliography

- A. Einstein, Relativity: The Special and General Theory.
- E. Mach, The Science of Mechanics.
- R. Resnick and D. Halliday, Physics.
- J. Kane and M. Sternheim, Physics.
- H. Goldstein, Classical Mechanics.
- L. Landau and E. Lifshitz, Mechanics.