Angular Magnitudes

Alejandro A. Torassa

Creative Commons Attribution 3.0 License (2013) Buenos Aires, Argentina atorassa@gmail.com

Abstract

In classical mechanics, this paper presents alternative definitions of angular magnitudes.

Angular Magnitudes

The angular magnitudes for a particle A of mass m_a are defined with respect to a position vector **r** which is constant in magnitude and direction.

Mass Moment	$\mathbf{K}_{a}=m_{a}\left(\mathbf{r\times r}_{a}\right)$
Angular Momentum	$\mathbf{L}_a = m_a \left(\mathbf{r} \times \mathbf{v}_a \right)$
Dynamic Moment	$\mathbf{M}_a = m_a \left(\mathbf{r} \times \mathbf{a}_a \right)$
Angular Work	$W_a = \int \mathbf{M}_a \cdot d(\mathbf{r} \times \mathbf{r}_a)$
Theorem	$W_a = \Delta \frac{1}{2} m_a (\mathbf{r} \times \mathbf{v}_a)^2$

Where \mathbf{r}_a , \mathbf{v}_a , and \mathbf{a}_a are the position, the velocity, and the acceleration of particle A.

The angular magnitudes for a system of particles are also defined with respect to a position vector \mathbf{r} which is constant in magnitude and direction.