Linear Magnitudes

Alejandro A. Torassa

Creative Commons Attribution 3.0 License (2014) Buenos Aires, Argentina atorassa@gmail.com

Abstract

In classical mechanics, this paper presents definitions of linear magnitudes from vector magnitudes.

Linear Magnitudes

The linear magnitudes for a particle A of mass m_a are defined with respect to a position vector **r** which is constant in magnitude and direction.

Linear Mass	$Y_a = m_a \left(\mathbf{r} \cdot \mathbf{r}_a \right)$
Linear Momentum	$P_a = m_a \left(\mathbf{r} \cdot \mathbf{v}_a \right)$
Linear Force	$F_a = m_a \left(\mathbf{r} \cdot \mathbf{a}_a \right)$
Linear Work	$W_a = \int F_a d(\mathbf{r} \cdot \mathbf{r}_a)$
Theorem	$W_a = \Delta \frac{1}{2} m_a (\mathbf{r} \cdot \mathbf{v}_a)^2$

Where \mathbf{r}_a , \mathbf{v}_a , and \mathbf{a}_a are the position, the velocity, and the acceleration of particle A.

The linear magnitudes for a system of particles are also defined with respect to a position vector \mathbf{r} which is constant in magnitude and direction.

Linear Potential Energy

The linear potential energy U_a of a particle A on which a resultant force \mathbf{F}_a acts, is given by:

$$U_a = -\int (\mathbf{r} \cdot \mathbf{F}_a) \ d(\mathbf{r} \cdot \mathbf{r}_a)$$

where \mathbf{r} is a position vector which is constant in magnitude and direction, and \mathbf{r}_a is the position of particle A.

If \mathbf{F}_a is constant and since $\mathbf{F}_a = m_a \mathbf{a}_a$, it follows that:

$$U_a = -m_a(\mathbf{r} \cdot \mathbf{a}_a)(\mathbf{r} \cdot \mathbf{r}_a)$$

where m_a is the mass of particle A, and \mathbf{a}_a is the constant acceleration of particle A.

Linear Mechanical Energy

The linear mechanical energy E_a of a particle A of mass m_a which moves in a uniform force field, is given by:

$$E_a = \frac{1}{2} m_a (\mathbf{r} \cdot \mathbf{v}_a)^2 - m_a (\mathbf{r} \cdot \mathbf{a}_a) (\mathbf{r} \cdot \mathbf{r}_a)$$

where \mathbf{r} is a position vector which is constant in magnitude and direction, and \mathbf{v}_a , \mathbf{a}_a and \mathbf{r}_a are the velocity, the constant acceleration and the position of particle A.

The principle of conservation of the linear mechanical energy establishes that if a particle A moves in a uniform force field then the linear mechanical energy of particle A remains constant.

Principle of Least Linear Action

If we consider a single particle A of mass m_a then the principle of least linear action, is given by:

$$\delta \int_{t_1}^{t_2} \frac{1}{2} m_a (\mathbf{r} \cdot \mathbf{v}_a)^2 dt + \int_{t_1}^{t_2} (\mathbf{r} \cdot \mathbf{F}_a) \,\delta(\mathbf{r} \cdot \mathbf{r}_a) \,dt = 0$$

where **r** is a position vector which is constant in magnitude and direction, \mathbf{v}_a is the velocity of particle A, \mathbf{F}_a is the net force acting on particle A, and \mathbf{r}_a is the position of particle A.

If
$$-\delta V_a = (\mathbf{r} \cdot \mathbf{F}_a) \,\delta(\mathbf{r} \cdot \mathbf{r}_a)$$
 and since $T_a = \frac{1}{2} m_a (\mathbf{r} \cdot \mathbf{v}_a)^2$, then:
 $\delta \int_{t_1}^{t_2} (T_a - V_a) \,dt = 0$

And since $L_a = T_a - V_a$, then we obtain:

$$\delta \int_{t_1}^{t_2} L_a \, dt = 0$$

Bibliography

A. Einstein, Relativity: The Special and General Theory.

E. Mach, The Science of Mechanics.

R. Resnick and D. Halliday, Physics.

J. Kane and M. Sternheim, Physics.

H. Goldstein, Classical Mechanics.

L. Landau and E. Lifshitz, Mechanics.