Un Nuevo Principio de Mínima Acción

Alejandro A. Torassa

Licencia Creative Commons Atribución 3.0 (2014) Buenos Aires, Argentina atorassa@gmail.com

Resumen

En mecánica clásica, este trabajo presenta un nuevo principio de mínima acción que es invariante bajo transformaciones entre sistemas de referencia y que puede ser aplicado en cualquier sistema de referencia (rotante o no rotante) (inercial o no inercial) sin necesidad de introducir fuerzas ficticias.

El Nuevo Principio de Mínima Acción

Si consideramos dos partículas i y j entonces el nuevo principio de mínima acción es:

$$\delta \int_{t_1}^{t_2} L_{ij} dt = 0$$

$$\delta \int_{t_1}^{t_2} (T_{ij} - V_{ij}) dt = 0$$

$$T_{ij} = +\frac{1}{2}m_i m_j \left[(\mathbf{v}_i - \mathbf{v}_j) \cdot (\mathbf{v}_i - \mathbf{v}_j) + (\mathbf{a}_i - \mathbf{a}_j) \cdot (\mathbf{r}_i - \mathbf{r}_j) \right]$$

$$V_{ij} = -\frac{1}{2}m_i m_j \left[2 \int \left(\frac{\mathbf{F}_i}{m_i} - \frac{\mathbf{F}_j}{m_j} \right) \cdot d(\mathbf{r}_i - \mathbf{r}_j) + \left(\frac{\mathbf{F}_i}{m_i} - \frac{\mathbf{F}_j}{m_j} \right) \cdot (\mathbf{r}_i - \mathbf{r}_j) \right]$$

donde m_i y m_j son las masas de las partículas i y j, \mathbf{r}_i , \mathbf{r}_j , \mathbf{v}_i , \mathbf{v}_j , \mathbf{a}_i y \mathbf{a}_j son las posiciones, las velocidades y las aceleraciones de las partículas i y j y \mathbf{F}_i y \mathbf{F}_j son las fuerzas (conservativas) netas que actúan sobre las partículas i y j.

El Lagrangiano L_{ij} es invariante bajo transformaciones entre sistemas de referencia.

El Lagrangiano L_{ij} puede ser aplicado en cualquier sistema de referencia (rotante o no rotante) (inercial o no inercial) sin necesidad de introducir fuerzas ficticias.